Magic and tech: privacy

Privacy is a major topic in today’s world. We hear about surveillance, privacy rights, wiretapping, and so much else that it’s hard not to have at least some knowledge of the subject. Whether it’s privacy in the real world, on the Internet, or wherever, it’s really a big deal.

Although we may talk about privacy in strictly modern terms, that doesn’t mean it’s a modern invention. Previous generations had privacy, and they had the attacks on it, the dangers to it, and the need for it. It’s only in recent times that “bad” actors (e.g., foreign—or domestic—government agents) have such a capacity for invading our privacy so effortlessly, so imperceptibly.

Private eyes

The easiest way to keep something private, of course, is to never make it public in the first place. If you’re putting every detail of your life on Facebook, then you really only have yourself to blame when it’s used against you. In general, that applies in any era, with the caveat that what’s considered “public” now might not have been so, say, a century ago. Now, this isn’t to say that not posting something guarantees it’ll never be seen in public (look at, for example, FBI-made spyware or NSA-developed cryptography algorithms), but it’s a good start.

Throughout history, privacy has also been a fight against those who are deliberately trying to invade your personal space. Today, it’s governments and corporations. Years ago, it was governments and neighborhood activist groups (is your neighbor a Communist?). In earlier times, it was governments and rival merchants. All of them would employ spies, informants, private detectives, and the like in their efforts to expose your secrets. And if you were important enough, you were almost obliged to do the same in retaliation.

Those things we need to keep private haven’t really changed, either. We still want to cover up our earlier transgressions, possibly illegal deeds, and all those things we wouldn’t be comfortable having “out there”. Yesterday’s scarlet letter is today’s racist tweet, a reminder of what happens when privacy fails. And the lengths we go to, the things we do to keep such parts of our past out of the public eye, those are becoming more important every day, because our world is getting more connected, but also less forgetful.

Today, we might use a VPN to hide our browsing history. We’ll clear cookies and block tracking scripts. Some people go even farther outside the Internet, avoiding entire city blocks because of surveillance, using burner phones, paying with cash wherever possible, and so on. Those are modern methods of protecting our privacy, but they have their roots in older ways. Hired runners, safe houses, ciphers—it’s all the same, just under a different name.

Magic-eye puzzles

Now, if you add magic, that breaks some of those methods. First off, if you’re in a D&D-style fantasy world, where any hedge wizard has access to the entire Player’s Handbook, you’ve got serious problems. A wizard who can use a scrying spell to see anywhere makes the NSA look like amateur hour. If he can pick up more senses—hearing, specifically—then privacy is essentially dead on arrival. Unless scry-blocking spells and enchantments are available, cheap, and useful, there’s nothing stopping such a setting from becoming the Panopticon.

But let’s take a step back, because the magical realm we’ve been discussing so far isn’t like that. No, it’s a bit more…down to earth. So let’s see what tools it has to protect privacy. While we’re at it, we’ll also take a look at the other side, because that’s always so much easier.

First, there aren’t any invisibility cloaks or disguise spells, unfortunately. However, we do have, thanks to the greater advances in the sciences that magic has created, a lot more options for mundane disguises. Clothing is cheaper, for example, so it’s easier to procure a sizable wardrobe. And travel is not nearly as time-consuming as in pre-modern Earth, meaning that hopping over to the next town to do your dirty work isn’t impossible; you may be suspicious, but not if enough people are moving around.

Privacy in our magical setting, then, is going to be mostly a matter of hiding and deflection, just like it used to be here. It’s not so much a technical problem as a way of thinking about a problem. It faces the same obstacles as in the Industrial era, and the people will most likely develop the same kinds of responses as our ancestors then. To take another example, think back to our magical pseudo-telegraph. These can’t easily be wiretapped—the telegraph (and later telephone) is where the term comes from—because there aren’t any wires. But that doesn’t mean our equivalent to the operator can’t be bought or even replaced. So, if sensitive information has to be sent over the magical lines, it’ll need to be encrypted.

On the flip side, once we’ve established that there are ways of recording or transmitting images and sounds, there’s an obvious kind of surveillance that comes about naturally: the hidden camera. Although they’d be magical in nature, the principle would be the same as in any spy movie. Visiting dignitaries would be wise to bring in their own mages to inspect their lodgings. (Although our actions in real life can’t be encrypted, our communications can, and a good cipher wouldn’t get any easier to crack with magic. Not until computers come around, at least.)

Hiding in plain sight

To remain private in our low-magic setting, therefore, we have to be cautious, but not overly so. The availability of recording devices and other such subterfuge won’t be high; the devices are expensive to create, and they take mages away from other tasks. But that doesn’t mean vigilance isn’t needed. Like in today’s world, how far you need to go to ensure your privacy is directly proportional to the damage your secrets would cause if they got out. If you’re carrying around national secrets, then you’d be stupid not to use the best encryption available. You’d be a fool if you didn’t inspect every room you entered for hidden microphones, magical or mundane.

For most of us, though, it’s a matter of being careful. Don’t give out sensitive information, because you never know who might be listening. Unlike today, our magical kingdom doesn’t have government supercomputers listening to everything we say. It doesn’t have corporations scanning every word we write. But that doesn’t mean it’s easy to keep private matters private. There are always people snooping around. Magic won’t make them go away.

Magic and tech: cities

In today’s world, over half the planet’s population lives in urban areas. In other words, cities. That’s a lot, and the number is only increasing as cities grow ever larger, ever more expansive. Even on the smaller end (my local “big” city, Chattanooga, has somewhere around a quarter of a million people, and it’s not exactly considered huge), the city is a marker of human habitation, human civilization, and human culture. It’s a product of its people, its time and place.

In the city

The oldest cities are really old. Seriously. The most ancient ones we’ve found date back about 10,000 years, places like Çatalhöyük. Ever since then, the history of the world has centered on the urban. These oldest cities might have housed a few hundred or thousand people, probably as a way of ensuring mutual protection and the sharing of goods. But some eventually grew into monsters, holding tens or even hundreds of thousands of people, primarily to ensure mutual protection and the sharing of goods.

Looked at a certain way, that’s really all a city is: a centralized place where people live together. The benefits are obvious. It’s harder to conquer a city’s multitudes. There’s always somebody around if you need help. Assuming it’s there, you don’t have to go very far to find what you’re looking for. In a rural area, you don’t have any of that.

Of course, clustering all those people together has its downsides. In pre-modern times, two of those were paramount. First, every person living in a city was one not working in the fields, which meant that somebody else had to do the work of growing the city-dweller’s food and shipping it to the urban market. Great for economics, but now you’re depending on a hinterland that you don’t necessarily have access to.

The second problem is one we still struggle with today, and that is sanitation. I’m not just talking about sewage (which wasn’t nearly as big a problem in some old cities as we typically imagine), but a more general idea of public health. Cities are dirty places, mostly because they have so many people. Infections are easier to spread. Waste has to go somewhere, as does trash. Industry, even the pre-industrial sort, produces pollution of the air and water. And water itself becomes a commodity; even though most older cities were built near rivers or lakes (for obvious reasons), it might not be the cleanest source, especially in an unusually dry season.

Through the ages

A city’s character has changed throughout history. While they’ve retained their original purpose of being a gathering place for humanity, the other purposes they serve fall into a few different categories, some of which are more important in certain eras.

First of all, a city is an economic center. It holds the markets, the fairs, the trading houses. Sure, a village can have a weekly market pretty easily, but it takes a city to provide the infrastructure necessary for permanent shops and vendors. This includes food sellers, of course, but also craftsmen and artisans in older days, factories and department stores today. You don’t see Wal-Mart sticking a new store out in the middle of nowhere (the nearest to me are each about 10 miles away, in cities of about 10,000), and that’s for the same reason why, say, a medieval village won’t have a general shop: it’s not profitable. (The Wild West trope of the dry goods store is a special case. They provided needed materials to settlers, miners, and railroad workers, which was profitable.)

Another purpose of a city is as an administrative center. It’s a seat of government, a home to whatever the culture’s notion of justice entails. In modern times, that means a police force, a city council or mayor, a courthouse, a fire department, and so on. Cultures with cities will begin to centralize around them, and these central cities may later grow into states, city-states, nations, and even empires. Larger cities also have a way of “projecting” themselves; all roads lead to Rome, and how many Americans can name all five of New York City’s boroughs, but can’t name that many counties in their home state? With national and imperial capitals, this projection is even greater, as seen in London, Washington, Beijing, etc. This ties into both the economic reason above, as capitals of administration are very often capitals of commerce, and the one we’re about to see.

Thirdly, cities become cultural centers. While projecting force and economic power outward, they do the same for their culture. This develops naturally from the greater audiences the city provides; it’s hard for an artist to find patronage when he lives out in the country. (That’s just as true in 2017 as it was in 1453, by the way.) And since cities provide stability that rural areas can’t, this creates more incentive for creative types to move downtown. This creates a snowball effect, often spurred on by government investment—grants in modern times, patronage in eras past—until the city begins to take on a cultural character all its own. Like begets like in this case, and in a larger nation with multiple big cities, a kind of specialization arises: movies are for Los Angeles, Memphis has the blues, Vegas is where you go to gamble.

Now with magic

So that’s cities in the real world: urban centers of commerce, government, art, defense, and so many other things. What about in a magical world?

In many cases, it depends on how magic works in the setting. Magic that can be “industrialized” is easy: it effectively becomes another public service (if it requires infrastructure such as artificial “ley lines”—I have written a series based on exactly this concept) or private industry (if it instead takes skilled craftsmanship, as with enchanters in fantasy RPGs). In both of these cases, magic can almost fade into the background, becoming a part of the city’s very fabric.

For the slightly rarer and much less powerful magic we’ve been talking about in this series, it’s a bit of a different story. Yes, there will be magical industries, crafts, and arts; we’ve seen them in earlier parts. As magic in our realm is predictable, almost scientific, it will be used by those who depend on that predictability and repeatability. That includes both the private and public sectors. And enterprising mages will certainly sell the goods they create. That may be in a free market, or their prices and supplies might be tightly controlled, creating a black market for magical items.

If magic can be harnessed for public works, then that implies that cities in our magical realm are, by default, cleaner than their real-world contemporaries. They won’t be dystopian disaster areas like Victorian London or modern Flint. They’ll have clean streets and healthier, longer-lived people than their predecessors. Again, the snowball starts rolling here, because those very qualities, along with the city’s other aspects, will function as advertising, drawing immigrants from the countryside. And the automation and advancement we’ve already said will come to food production lets them do it. Thus, it’s not nearly as hard as you think to get a magical city up to, say, half a million in population.

The main thrust of this series has been that magic can effectively replace technology in certain types of worldbuilding. That’s never more true than in the city. Technology has made cities possibly in every era. The first urban areas arose about the same time as farming, and there’s no denying a connection there. Iron Age advances created the conditions necessary for the first true metropolises, and industrialization, machinery, and electricity gave us our modern megacities. At each stage, magic can create a shortcut, allowing cities to grow as large as they could in the “next” technological leap forward.

Magic and tech: food and drink

The need to eat is one of our most basic survival instincts. Every living thing has to do it, and humans have, as in so many other areas, taken the processes of collecting, preparing, and eating food to a level unseen anywhere else on Earth. Many inventions have come about solely for the purpose of making our food better. Sometimes, better means more nutritious. Much more often in history, however, better food is simply food that lasts longer.

And don’t forget about drinks. There’s not an animal alive that doesn’t enjoy a drink of water, but humanity has taken water and flavored it in myriad ways to create beverages. And we use more than just water as a base for our drinks: orange juice is one of the most popular “natural” drinks around, and all we have to do is extract it.

In the world

The history of food is tied to the history of mankind. Cooking seems to have emerged about 10,000 years ago, right around the same time as so many other parts of the Neolithic Revolution, like pottery and plant domestication; before this, we have some evidence of open fires and cooking pits, but not cooking vessels. An announcement in December 2016 (the very week I wrote this post, in fact) details a pottery find in the Sahara that shows biological markers of cooked plant matter dating back about this far. The timing can’t be a coincidence: the first domesticated cereal grains, the oldest ceramics, and a technique that just happens to use both of them? If anything, that sounds like cause and effect to me. Not sure which one’s the cause, though.

Anyway, preparing food has a long history. So does producing it, whether through growing crops or raising stock. Domestication of animals for food took a bit longer than plants (animals are a bit more willful, you see), but it happened. Some would say we’re doing too well at that these days—the free-range movement is all about lowering food production, because the techniques we’ve developed to get the extreme yields lead to extreme suffering on the animals’ part.

Cooking was, for most of human history, something you did over a fire. You could build a box to contain the fire (an oven), put a slab on top of it (a stove or griddle), stick a pot full of water over it to boil (a cooking pot), but it was still a fire. It’s only very recently that we got rid of that, with our gas and electric ovens, our microwaves, and our coffee makers. Yet we go back to the fire even now, when we’re camping or roasting marshmallows, or when the chef breaks out the blowtorch. And gas stoves still use flames, so a lot of Americans retain that millennia-old connection to their Stone Age ancestors.

If there’s anything we have undeniably improved on in the modern era, it’s food preservation. As little as 200 years ago, that was largely limited to salting, pickling, and similar curing processes. In colder climates, you could freeze food through the winter by stuffing it in the snow; everywhere else could get a mild cooling—but not freezing—effect by digging a deep enough hole, which works well for, say, wine. But much food was eaten fresh, or near enough to it. What wasn’t usually came out in some other form: pickles, jams, etc.

Today, by contrast, preserved foods are the norm. We’ve got refrigerators, freezers, canning, vacuum-sealed plastic packaging, and an array of foods specifically designed for a long shelf life. (That’s something else olden days didn’t have. Food sitting on a shelf was food gone to waste.) We have “instant” mixes that, while they may not taste like the real deal, are close enough for people on a budget in time and money. I eat frozen dinners all the time, and they’re basically the same thing. And even when we do use older techniques, we combine them with the new, putting our pickles in the fridge.

Finally, our modern world has given us another benefit in terms of our diet. As we’ve become more connected, as the apparent distances between us have shrunk, we have expanded our palates. Any decent-sized American city will have not only American food, but Italian, Mexican, Japanese, Chinese, and many more. India and Thailand are about as far from the east coast as you can get while still on the same planet, yet immigration and modern food production have combined to let us sample their cuisines from thousands of miles away.

Now with magic

In the general timeframe of the Middle Ages, they didn’t have all that. Sure, there was a booming trade in spices, as there has always been. A few exotic foods made their way to distant locales, though rarely in fresh form. And the European climate in most places was so different from their nearest “exotic” trading partners, the Muslims of the Middle East and North Africa, that many of the food plants simply wouldn’t grow.

Magic, as we’ve provided for our magical realm, won’t change that too much. The distances will still be great, and magical transportation won’t move that much faster than sea travel, once you take into account the often winding roads, the customs checkpoints, the weather, and so on. Grain can keep for a long time, and so can a lot of other food items, but the “goes bad quickly” set won’t shrink very much, because the timing isn’t right. Thus, this part of the exercise won’t be that different from what the real world gives us.

Producing food, however, will get a big boost from magic. Indeed, there’s almost no reason why that won’t be one of the first areas of interest our mages work on. Higher crop yields, protection against crop failure, larger stock, more eggs…these all help everybody in an agrarian society. If the mages don’t focus somewhat on improving agriculture, what good are they? (Even combat-oriented RPGs get this one right. D&D 4th Edition has Bloom as a 2nd-level ritual. Pathfinder’s Plant Growth can be cast at level 5, and it only takes 6 seconds. And that’s not counting the direct “Create Food” stuff.)

So we can assume our magical kingdom will have more food produced. Next up comes harvesting it, often a labor-intensive task. Again, we’ve seen how magic can reduce the labor needed by creating industrial-like machines. All that’s stopping the mages from moving into farm machines is imagination. They may not be to magic-powered combines and tractors yet, but those aren’t too far into the future.

Even a marginal mastery of heat and cold—one we’ve already said this realm has—opens up a lot of avenues for research into refrigeration and cooking. Everything from starting fires to chilling wine gets a boost, along with too many other things to name. Remember that cooking in pre-modern times is mostly about fire. Make that fire easier to work with, and the improvements naturally follow from there. The other processes of cooking, such as chopping, don’t benefit as much, but control over temperature more than makes up for that.

Last, let’s take a look at drinks. Most of those won’t be too modern, as our sodas and imitation fruit juices and “lite” beer take a lot of chemistry and machinery that is out of their league. But cold drinks will be more common, even in summer, and this magical kingdom may learn the joys of iced beverages far sooner than ours did. Fruit juices, easier to extract thanks to magical machines, will likely become popular. Distillation will allow for stronger alcoholic drinks. And then we come back to plain old water. With magic, purification gets a boost (it’s about the same as with alcohol, actually), so clean drinking water isn’t a problem, even in cities.

We’ll leave it on that note, but keep that last idea in mind, because that’s where the next post will go: into the magical cities.

Magic and tech: clothing and fashion

We humans are peculiar in a great many regards, but one of those is our clothing. Call it a cultural imperative, but we all wear clothes. Those few of us that don’t, such as nudists or those few indigenous peoples who still haven’t adopted at least a loincloth, are seen as odd by the rest of our species. (The story of Genesis is at pains to point out that, once they received the higher wisdom of the tree, Adam and Eve very specifically became “ashamed” of their nakedness.) But the big picture tells a different story: as life on this planet goes, we are the weird ones. Only humans feel the need to cover some or most of their bodies in some other substance most of the time.

This may be from an evolutionary quirk, as humans are a rarity in another way. How many other animals choose to leave their evolved habitat? Very few. That’s not just how evolution works, but why. Species adapt to their environments, and there’s a kind of “inertia” that keeps them there. It’s probably because adapting is hard, and where’s the reproductive advantage in doing it all over again?

Putting something on

The first and most obvious choices for human clothing, looking back to prehistoric times, were likely animal skins. Despite the misguided crusades of PETA and others, that’s still an attractive option today. How many of you own a leather jacket, or a fur coat, or something of that sort? Skins are a good choice for protecting us from the elements (one of the original and most important uses for clothing), because, hey, it works for the animals they belong to.

Any culture can make clothing out of animals. It’s not that hard to do, all things considered. And there’s a lot of technological progress that can be made there. Tanning, the process of transforming raw hides into leather, may have been one of the defining developments of the Neolithic, alongside agriculture and villages, if only because it’s one of our oldest examples of a “manufacturing” process.

A few other materials coming from animals see use for clothing. Wool is the big one, but the hair of a few other mammals can also work. Biblical-style sackcloth, for instance, used animal hair, as did medieval hairshirts, strangely enough. Outside of the mammals, we also find silk, which comes from the cocoon of the silkworm. Like hair, silk is a fiber, and we can spin fibers into threads, then weave threads into cloth. Simple as that.

But the best fibers, in terms of cost, ease of use, and animal ethics, come in the form of plant fibers. And it’s those that formed the basis for most day-to-day clothing in the Western world until modern times. As a matter of fact, even our synthetic world of polyester and nylon and the like still holds ample evidence of plant use. I’m wearing an awful lot of cotton right now, for example, and linen (from flax) hasn’t gone away after all these centuries.

Dressing up

Intimately related to clothing is the idea of fashion. It’s all well and good to say that humans cover themselves with animal or plant parts, but how they do so is one of the hallmarks of a culture. What parts do we cover? (That’s a more nuanced question than you might think; in America, it’s different for men and women and children.) What sorts of clothes are acceptable? What kinds of styling do we use, and when?

A lot of questions like this are highly specific to a culture, and it’s hard to draw many general conclusions. Most every culture agrees that the pelvic region should be covered, for instance—though even that is not universal. And it’s rare to find a place that doesn’t have a fashion “hierarchy”, where certain people are expected to wear “better” clothes at certain times. Think of a suit, a tuxedo, or our “Sunday best”, then compare that to what we might wear at the beach, or just around the house.

One of the more interesting—and more visible—aspects of fashion is color. At some point long ago, our ancestors discovered they could dye those materials they used for their clothing. Today, we take that for granted, but it wasn’t always thus. Purple is seen as a royal color in the West because one shade of purple (Tyrian purple) was once worn exclusively by royalty. And why did they choose that particular purple? Because it was just about the most expensive kind of dye you could find: literally worth its weight in silver.

Throughout the ages, that becomes the refrain of high fashion. And high fashion eventually trickles down to low fashion, but low fashion has made its own developments in the meantime. Some of those developments are modern, such as the boxer briefs I’m wearing as I write this. Others have a much longer history, like sandals. Sometimes, the history is longer than you’d expect; art from over 2,000 years ago shows women wearing something that looks an awful lot like a bikini.

Fashionable magic

Whatever form it takes, fashion is an integral part of a culture, and it’s also an important part of any study of clothing. Thus, as we turn to our magical realm, we’ll treat the two of them as inseparable.

First, though, we need to make the clothes. In olden days, that was a laborious, time-consuming task. It’s not a stretch to say that the whole Industrial Revolution came about as a way to simplify that task. Spinning fibers into threads took so much time that some researchers have concluded that it was effectively a constant job for medieval-era women. They’d do it while they weren’t doing anything else, and sometimes when they were. Weaving was likewise hard work. Dyers might have been respected, but only if you weren’t downwind of them. And forget about all those things we take for granted, like zippers or standard sizes.

Industry changed all that, and so can magic. We’ve already seen how magic, within the boundaries we have set, can improve the manufacturing capabilities of our realm. Applying that to clothes-making will likely be one of the first things the mages do. It’s a no-brainer. In our world, it was one of the first true cases of factory automation. That’s not going to be any different if it’s magic powering the factories. (Putting all those women out of work will have…interesting consequences.)

On the other hand, dyeing doesn’t get much of a boost from magic. It’ll benefit from the advances in chemistry made possible by magic itself and the general inquisitiveness that magic will bring, but there are fewer direct applications. Processing the materials for dyes might be automated, though, in much the same way as spinning thread. The same goes for extracting the plant fibers for clothes in the first place; every American student has heard of Eli Whitney and the cotton gin.

One thing is for certain: magic will make clothes cheaper across the board. When clothes cost less, people will have more of them. Even the poorest folks will be able to afford richly dyed fabrics instead of plain whites, browns, and grays. That’s the point when fashion becomes “mainstream”. Once a sufficient percentage of the population has access to finery, styles can develop. Fashion transforms from a noble quirk to a cultural phenomenon. What form it will take is nearly impossible to predict. And it’s a moving target, even in older times. How many people do you know in 2017 wearing bell-bottoms or tie-dyed shirts? How many have you seen in corsets and pantaloons outside of reenactments?

To end this post, let’s look at one very intriguing possibility that sprang from the development of clothes: computers. I know that sounds crazy, but bear with me. Weaving complex fabric patterns on a loom is difficult. It’s hard to make a machine that can do that, and harder still to develop one that can change its patterns. Joseph Marie Jacquard did just that about 200 years ago. He created a mechanized loom that could change its weave based on a pattern of holes punched in a series of “input” cards. Punched cards. Herman Hollerith took them for his census-counting machine at the end of the 19th century. Sixty or so years later, IBM used them to store the data for their first computers.

Now, the “programming language” of Jacquard looms isn’t Turing-complete, and nobody would claim that someone using the loom was truly programming a computer, but the seed of the idea is there. In fact, almost everything an early computer would need can be done with the magic we’ve seen in this series, some six centuries before it “should” exist. That doesn’t mean our magical realm has computers, or will get them anytime soon, but it’s definitely one of those strange paths you might want to look down. In this new year, I’ll try and find more of them for us to explore.

Magic and tech: economy

One of the biggest topics of the last decade has been the economy. We’re finally climbing out of the hole the banks dug for us in 2008, and it’s been long enough that most people have taken notice. Employment, income, wages, and benefits are important. So are less obvious subjects like inflation, debt and credit, or mortgages. Even esoteric phrases like “quantitative easing” make the news.

The economy isn’t a modern invention, however. It’s always been there, mostly in the background. From the first trade of goods, from the first hiring of another person to perform a service, the economy has never truly gone away. If anything, it’s only becoming bigger, both in terms of absolute wealth—the average American is “richer” than any medieval king, by some measures, and today’s billionaires would make even Croesus jealous—and sheer scope.

How would magic affect this integral part of our civilization? The answer depends on the boundaries we set for that magic, as we shall see.

Scarcity

Our economy, whether past, present, or foreseeable future, is based on the concept of scarcity. For the vast majority of human history, it was only possible to have one of something. One specific piece of gold, one individual horse, one of a particular acre of land or anything else you can think of. You could have more than one “instance” of each type—a man could own twenty horses, for example—but each individual “thing” was unique. (Today, we can easily spot the friction caused when this notion of scarcity meets the reality of lossless digital copying, the lashing out by those who depend on that scarcity and see it slipping away.)

Some of those things were rarer than others. Gold isn’t very common; gems can be rarer still. Common goods were relatively cheap, while the rare stuff tended to be expensive. And that remains true today. Look at any “limited edition”. They might have nothing more than a little gold-colored trim or an extra logo, but they’ll command double the price, if not more.

Supply and demand

All that only applies to something people want. It’s a natural tendency for rare, desirable goods to climb in value, while those things that become increasingly common tend to also become increasingly worthless. This is the basis of supply and demand. If there’s more of something than is needed, then prices go down; if there’s a shortage relative to demand, then they go up.

Although it’s a fairly modern statement, the concept is a truism throughout history. It’s not just a fundamental idea of capitalism. It’s more a natural function of a “scarcity economy”. And you can apply it to just about anything, assuming all else is equal. A shortage of laborers (say, due to a plague) pushes wages higher, because demand outstrips supply. That’s one of the ultimate killers of feudalism in the Middle Ages, in fact. Its converse—a glut of supply—is the reason why gas prices have been so low in America the past year or so.

Interconnected

Another thing you have to understand about the economy is that it’s all connected. Today, that’s true more than ever; it’s the reason we can talk about globalism, whether we consider it a bringer of utopia or the cause of all the world’s ills. For less advanced societies, the connectivity merely shrinks in scale. There was, for example, no economic connection between Europe and the Americas until the fifteenth century, apart from whatever the Vikings were up to circa 1000. The Black Death had no effect on the economy of the Inca, nor did the collapse of the great Mayan cities cause a recession in Rome. Similarly, Australia was mostly cut off from the “global” economy until shortly before 1800.

Everything else, though, was intertwined. The Silk Road connected Europe and Asia. Arab traders visited Africa for centuries before the Portuguese showed up. Constantinople, later Istanbul, stayed alive because of its position as an economic hub. And like the “contagious” recessions of modern times, one bad event in an important place could reverberate through the known world. A bad crop, a blizzard blocking overland passes, protracted warfare…anything happening somewhere would be felt elsewhere. This was the case despite most people living a very localized lifestyle.

Making magic

In role-playing games, whether video games or the pen-and-paper type, some players make it their mission to break the economy. They find some loophole, such as an easily creatable magic item that sells for far more than its component cost, and the exploit that to make themselves filthy rich. It happens in real life, too, but government tends to be better at regulating such matters than any GM. (The connection between these two acts might make for an interesting study, come to think of it.)

We’re trying for something more general, though, so we don’t have to worry about something as fine-grained as the price of goods. Instead, we can look at the big picture of how an economy can function in the presence of magic. As it turns out, that is very dependent on the type of magic you have at your disposal.

First, let’s assume for a moment that wizards can create things out of thin air. Also, let’s say that it’s not too difficult to do, and it doesn’t require much in the way of training or raw materials. Five minutes of chanting and meditating, and voila! A sword falls at your feet! Something more complex might take more time, and living things can’t be created at all, but crafted goods are almost as easy as a Star Trek replicator.

Well, that destroys any economy based on scarcity. It’s the same problem media companies have with computers: if something can be copied ad infinitum, with no loss in quality, then its unit value quickly drops to zero. Replicating or creating magic, if it’s reasonably widespread, would be like giving everyone a free 3D printer, a full library of shape files, and an unlimited supply of feedstock. Except it’d be even better than that. Need a new sword/axe/carriage/house? Call up the local mage. No materials needed; you’re only paying for his time, the same as what would happen to books, music, and movies without licensing fees and DRM.

So that’s definitely a “broken” economy. Even a single user of such magic breaks things, as he can simply clone the most expensive or valuable items he knows, selling them whenever he needs the cash. Sure, their value will eventually start to drop—supply and demand in action—but he’ll be set for life long before he gets to that point.

It’s the economy, stupid

For our magical kingdom, let’s look at something more low-key. It doesn’t have creation magic. Instead, we have at our disposal a large amount of “automating” magic, as we’ve seen in previous parts. What effect would that have on the economy? Probably the same effect increasing automation has in our real world.

Until very recently, most work was done by hand, occasionally with help from machines that were powered by people, animals, or natural forces. The Industrial Revolution, though, changed all that. Now, thanks to the power of steam (and, later, electricity), machines could do more and more of the work, lightening the load for the actual workers. Fast-forward to today, where some studies claim as many as 40% of jobs can be done entirely automatically. (For labor, we’re actually getting fairly close to “post-scarcity” in many fields, and you can see the strain that’s beginning to cause.)

Magical force and power can easily replace steam and electricity in the above paragraph. The end result won’t change. Thus, as magic becomes more and more important in our fictional realm, its effects stretch to more and more areas of the economy. As discussed in the post about power, this is transforming the workforce. Unskilled labor is less necessary, which means it has a lower demand. Lower demand, without a corresponding decrease in supply, results in lower wages, fewer working hours, fewer jobs overall. We know how that turns out. The whole sordid story can be found in all sorts of novels set in Victorian England or Reconstruction America—Charles Dickens is a good start. Or you can look at modern examples like Detroit or Flint, Michigan, or any steel town of the Midwest.

There is an upside, though. After this initial shock, the economy will adjust. We see that today, as those displaced in their jobs by robots have begun branching out into new careers. Thus, it’s easy to imagine a magical society embracing the “gig economy” we’re seeing in Silicon Valley and other upscale regions, except they’d do it far earlier. You could even posit a planned socialist economy, if the magic works out.

But mages are human, too. They’re subject to need and greed the same as the rest of us. So they might instead become the billionaires of the world. Imagine, for instance, wizards as robber barons, hoarding their techno-magic to use as a lever to extract concessions from their rivals. Or they could simply sell their secrets to the highest bidder, creating something not much different from modern capitalism. If magic has a distinct military bent, then they could become the equivalent of defense contractors. The possibilities are endless. All you have to do is follow the chain of cause and effect.

The economy is huge. It’s probably beyond a single author to create something entirely realistic. But making something that passes the sniff test isn’t that hard. All you have to do is think about why things are the way they are, and how they would change based on the parameters you set. Oh, and you might want to find one of those munchkin-type players who likes to find loopholes; for the economic side, they’re more useful than any editor.

Magic and tech: government

Fantasy’s association with the High Middle Ages has the unfortunate side effect of locking the entire genre into the feudal monarchy of medieval Europe, specifically England. True, there are counterexamples, and the subgenre of “flintlock fantasy”, set in the Renaissance and Enlightenment periods, allows authors to explore other varieties of government, but the classic of kings and lords and knights is still prominent. Does it have to be?

No, it doesn’t. It’s just the default option. We’re used to reading feudal fantasy, so that’s what we think of when we consider the genre. But, as I’ve written before, it’s not the only way to go.

This series, however, is about magic and technology, not politics. So how does magic affect government? Well, we’ll see. First, though, a warning: unlike most other posts in the series, this one will skip right to the meat of the question. My earlier post on fantasy governments (linked above) does a good enough job of explaining the kinds of government available.

The rule of magic

In our magical realm, we don’t have some of the stranger varieties of magic. Total surveillance, for example, isn’t feasible. Precognition is out. Remember, we’re working with a much more down-to-earth system of arcane art.

That also means that wizards aren’t all-powerful. Although it’s obvious that government would utilize magic, it won’t be dominated by it. There simply isn’t the power, nor are there enough practitioners. We’re in that sweet spot where magic isn’t strong enough to take over, but it will still have a sizable influence. In that, it’s a bit like lobbying in our own time.

What it can do, however, is make the government more modern, just as it does for most other aspects of society. Kings kept power because they had it. Some used their power to increase that same power, leading to absolute monarchies like France and Russia. Others had checks on royal prerogative, such as England or the elected rulers of central Europe.

Magic will be another check on power. The government can’t regulate or repress all aspects of it, and it knows that. The only other option is to accept magic for what it is, to work with it rather than against it. So that’s what our magical realm does. By accepting that there is a segment of the population (the wizards) with strength out of proportion to its size, the government takes a reduction in its own power for the sake of stability.

Rulers understand that a wizard could, if he so chose, assassinate them easily. That fear is a motivator, a damper on the inevitable slide towards tyranny. Thus, we have a system that does not become an absolute dictatorship. Our magical society is not an empire whose reins are held in one pair of hands.

But magic is also a counter to heredity. While it may be passed down from parents to their children, it can also occur in “wild” form. If anyone can potentially become a mage, from the royal family to the lowest beggar, but there’s no guarantee that mages will give their status to the next generation, then there can’t be an arcane aristocracy. A preexisting mundane one remains, but it is weakening.

In historical Europe, the Black Death was one of the causes of the manorial system’s downfall; for our fantasy realm, the discovery and harnessing of magic fulfills the same purpose. Magic decreases the need for labor, freeing lower-class citizens from the restraints of land-working. As they spend more time idle, there’s less cause to tie them to the land of a manor lord. Cities are growing, trades flourishing, exactly as in the later 14th century and into the 15th.

Our magical realm isn’t a republic, but it is showing signs of moving in that direction. Both the mages (from their magic) and the growing middle class (from their newfound freedom of social movement) have asked for a share of the governing. They’re still willing to defer to their king, but not to submit before him. Thus, a parliamentary monarchy is in the process of forming, as in medieval England.

On a more local level, while some lords retain their power, the cities are often experimenting with elected governors and mayors. Typically, these are, in fact, mages; they’re considered good candidates because they are obviously both intelligent and restrained. Mundane people can hold office, but they have to be exceptional. Institutionalized elections are in the future, but ad hoc representation is taking hold.

Summing up

So that’s where we stand. Our magical kingdom isn’t ruled by a tyrant, whether an iron-fisted dictator or a grand, evil wizard. It’s rather more like what we’re used to, and closer to today than “then”. And things are only going to get better. Just as magic has compressed the scientific advancement of a few centuries into the span of decades, it’s doing the same for government. True representative government may not be that far off.

This is largely because of the ground rules we’ve made. Since magic isn’t world-shattering in its power, and it’s too common to be confined to a small cabal, the conditions for a “thaumatocracy” just aren’t there. Instead, we get something that’s marginally ahead of the “high” fantasy still stuck in the 1200s, something more like a post-gunpowder, pre-modern setting. Think less Agincourt and more Yorktown. With magic, we come closer to Reformation and Revolution, because the world is moving, and it will take government along for the ride.

Magic and tech: safety and security

Despite what you may hear from TV and other sources of news, the world we live in today is the safest there’s ever been. Those of us living in the modern, industrialized West enjoy a level of personal, private, and public safety that would make earlier ages green with envy. Some of that comes from philosophy, from political science and enlightened ideas about the responsibilities of good government. With the representative democracies that make up most of Europe and North America, we’re all invested in the safety of everyone. An attack on one of us is an attack on all of us.

But technology also plays an important role in keeping us protected, on allowing us to live our lives free of the fears of random violence or other threats. Say what you will about them, but guns are a sufficient deterrent in many instances. But this isn’t the only form of technological security. Look at crash helmets, airbags, or even knee pads—all inventions created to keep us safe from incidental harm.

Science of safety

Today, we’re seeing a lot of talk about safety and security. Before we can look at them, though, we need to distinguish these two terms. Security, as I see it, is active protection from external threats, looking out for the things that might hurt you and dealing with them. Safety is more like not having those threats in the first place, or mitigating their causes in such a way that they never have the chance to harm you in the first place. Both of these aspects are intertwined, however.

Most technology deals with both ends of this spectrum at the same time. Take, for instance, collision avoidance. It’s a safety feature, in that its whole point is to steer you away from the possibility of a crash. But it can also be an active security system: if another car cuts you off, it can avoid that potential crash, too. Some of the more advanced systems can also stop you from causing an accident, by creating a negative feedback in steering or simply ignoring your movements of the wheel completely.

Safety and security aren’t limited to electronic assistance. They go back to the beginning of time. Any non-hunting weapon (or hunting weapon used for self-defense) is an implement of security. So are bodyguards and even standing armies. Public policies dating back to the age of Rome and before instituted measures of safety, from sanitation standards to traffic ordinances to weapons bans. (Whether these worked, of course, is a matter of debate.)

Socially speaking, there are also two ways we can look at safety. First, we can take it into our own hands. Anyone who owns a gun, has an alarm system, or even wears a seatbelt is doing exactly this. By following what we perceive to be “best practices”, we can make ourselves as safe as we wish. If X will harm you, then you try to put yourself in a position where X can’t get to you.

The alternative (not that they are mutually exclusive) is to put your trust in another. We also do that all the time. The whole point of a society based on the rule of law is that someone, somewhere, is responsible for the safety of the public. Whether that’s a king, president, or whatever you like, it doesn’t matter. Someone is looking out for you. We can’t protect against every threat, so we delegate to them.

Safety in magic

Most of our best safety and security comes from technology, whether that’s guns, cameras, anti-virus programs, or just a combination lock. Since we’ve established that magic can replace an awful lot of tech, we have to wonder: can magic make people safer?

Well, we’ve already seen a couple of realms where it does: medicine and self-defense. That’s proof enough of the merit of magical security. But how much further can we take this?

If your magic system allows shields of force (for this series, ours doesn’t, but bear with me), then that right there is a great example. Something like that would become extremely popular, especially if it’s not that hard to make. A single charm or enchantment that makes you all but immune to weapons, blunt trauma, falling, and the elements? You’d be crazy not to get one. But let’s say you’re working with something a little more low-key, like we are. We don’t have the luxury of an easy illustration of the power of magical security, so we’ll have to look at a few other possibilities.

We have an amplifying spell. A crafty mage can take this and turn it around. Instead of a speaker making his voice louder, a wary person can make ambient sounds louder. Sounds like, say, someone creeping through the bushes. It’s a primitive, but useful, security microphone. From the same earlier entry in this series, we also see a ventriloquist effect that can serve as a helpful bit of misdirection. If they think you’re over there, but you’re really here, those dangerous enemies will be out of position, giving you time to strike or run away.

Magical power, whether electrical or motive, gives us the opportunity to create such things as self-locking doors and electrified fences. Metallurgy, improved by the arcane arts, makes it easier to forge heavy, secure locks, but also the delicate keys needed to open them. A mage’s invisible markings can be used as fingerprinting or watermarking: a secure method of verifying the identity of a message’s sender. On the safety side, we have, of course, medicine and sanitation as the big winners, but they’re not the only ones.

Magic, and the scientific, empirical mindset it’s bringing to our fictional realm, will make many areas safer. From the grand (weather forecasting) to the mundane (washing hands), as our magical society becomes more advanced, it will seek out ways to keep its populace safe and secure. Sometimes, this may go too far—the seemingly inexorable slide of our own world into a surveillance state is an example—but one can hope the mages are smarter.

Safe and sound

If you’ll recall, our magical kingdom is, technologically speaking, still in the late medieval era. The added magic, however, is bringing it up to near-modern levels. Part of that advancement is in making people safer. If you do that, they live longer, healthier, better lives. They become more productive, and you eventually get that positive reinforcement that can explode into modernity. All you have to do is take some of the danger out of the world. Once the existential threats are no longer, people can begin to make themselves better.

Magic and tech: art

Art is another one of those things that makes us human, and in more than one sense: some of the earliest evidence for human habitation comes in the form of artwork such as cave drawings or inscribed shapes on animal bones. As much as I hate to admit it (I failed art class in high school), we are artistic beings.

And art—specifically the visual arts such as painting, sculpture, etc.—has progressed through the ages. It has taken advantage of technological progress. Thus, there’s no reason why it wouldn’t also be affected by the development of magic. Although it may seem odd to consider art and science so intertwined, it’s not really that far out there.

The real way

Art history is practically a restatement of the history of materials. That’s our human nature coming out; almost the first thing we do with a newly developed article of clothing, for instance, is draw on it, or paint it, or dye it. Today, we’ve got fancy synthetics colored in thousands of different hues, but even our ancestors could do some remarkable things. Look at some of those Renaissance paintings if you don’t believe me.

What they had to work with was…not the same as what we use. Many of their paints and dyes were derived from plant or animal products, with a few popular pigments coming from minerals such as ochre. Their instruments were equally primitive. Pencils weren’t invented until comparatively recently, brushes were made from real animal hair (requiring a real animal to provide it), and those fancy feather quills we only use nowadays for weddings and The Price Is Right were once the primary Western tool for writing in ink.

For “3D” artwork, the situation was little better. Today, we have things like CNC mills and techniques to move mountains of metal or marble, but our ancestors made some of the most impressive monuments and structures in the world with little more than hammers and chisels. (In the Americas, they even built pyramids without metal tools. I couldn’t build a pyramid like that in Minecraft!)

Can magic help?

How would magic advance the world of art? Our usual approach of balls of stored elemental energy won’t do much, to be honest, but there is one way they could help, so we’ll get that out of the way first. Lighting has been a problem forever; getting it right is one of the hardest parts of a modern media production. (Supposedly, this is one of the reasons why the next season of Game of Thrones is delayed.) But we’ve already stated that magic can give us better artificial lights. Give them to artists, and you instantly make portraits that much better.

Other improvements are a little less obvious. Many mages will have an easy path to artistry, as the study of magic is as much art as science. It requires observational skills, creativity, and commitment—all the same qualities a good artist needs. And they can use personal spells to aid them. What artist wouldn’t want photographic memory, for example?

The materials will also benefit from the arcane, as we have seen. The earlier advent of chemistry means, among other things, better pigments. Upgraded tools allow for more exquisite and exotic sculpture. With the advanced crucibles and furnaces magic brings, our magical realm might see a boom in the casting of “harder” metals like iron or steel. Magical technology may also bring an increased emphasis on artistic architecture. All in all, the medieval realm will start to look a lot more like the Renaissance, if not more modern.

That’s not even including the entirely different styles of art magic makes possible. Maybe pyrotechnics displays (achieved through fire spells) become popular. Etching via jets of water is a modern invention, but the right system of magic might allow it centuries earlier. Welded sculptures? Why not? You can even posit a “magical” photograph apparatus, moving the whole genre of picture-taking several hundred years into the past. And it’s a small step from recording still images to recording a bunch of still images in succession, then playing them back at full speed, especially if you get a helping hand from a wizard.

Yes, I’m talking about movies. In a society outwardly based on medieval times. It’s a complex problem, but it’s not entirely infeasible. All you really need are two things. First, a projector, which magic can easily provide. (Hint: a magic light and a force-powered motor.) Second, film. That one’s a bit harder, but it only took a few decades for inventors to go from stills to moving pictures. There’s no reason why wizards couldn’t do the same thing, although they may be held up by the need for chemical advances to make a translucent photographic medium.

It’s magic

Magic is already art, but that doesn’t mean it can’t make the lives of artists easier and more interesting. It’s often been asked what a famous artist of the past (e.g., Leonardo da Vinci or Michelangelo) could create if they were given today’s tools. In a magical society, we can come one step closer to answering that question. And that’s with a low-magic setting. Imagine what a sword-and-sorcery mage-artist could accomplish.

Conlangs as passwords

Keeping our information secure is a high priority these days. We hear a lot about “two-factor authentication”, which usually boils down to “give us your mobile number so we can sell it”, but the first line of defense for most accounts remains the humble password.

The problem, as eloquently stated by XKCD #936, is that we’ve trained ourselves to create passwords that are all but impossible to remember. And the arcane rules required by some services—banks are the worst offenders—can actually serve to make passwords less secure than they otherwise could be. There are two reasons for that. One, the rules of what’s an “acceptable” password restrict the options available to us. An eight-character password where one of those characters must be a capital letter, one must be a number, and a third must be a “special” character (but not those that might interfere with the site’s code, like the semicolon) really only gives you five characters of leeway.

The obvious solution is to make passwords even longer, but that brings into play the second problem. A password like eX24!mpR is hard to remember, and that’s only eight characters. Extend that to twelve (Ty93M@tsD14k) or sixteen (AsN3P45.tVK23hU!) and you’ve created a monster. Yes, muscle memory can help here, but the easiest way to “remember” a password like that is to write it down, which defeats the whole purpose.

The XKCD comic linked above outlines a way to solve this mess. By taking a few common English words and smashing them together, we can create passwords that are easy to remember yet hard to crack by brute force. It’s ingenious, and a few sites already claim to be “XKCD-936 compliant”.

But I had a different idea. I’ve made my own languages, and I’m still making them. What if, I thought, I could use those for passwords? So I tried it, and it works. In the last year or so, I’ve created a few of these “conlang passwords”. And here’s how I did it, and how you can use the same method.

Rather than a few unrelated words, a conlang password is a translation of a simple phrase. Usually, I try to use something closely related to the function of the site. For example, my account on GOG.com is the phrase “good old games”—the site’s original name—translated into one of my older (and unpublished) conlangs. Similarly, my start page/feed reader has a passphrase that means “first page”. My password on Voat translates as “free speech”. All very easy to guess, except for the fact that you don’t know the language. Only I do, so only I can do the necessary translation.

Going this way gives you a couple of extra benefits. Case is up to you, so you could use a phrase in title case for those sites which require a capital letter. Or you can use a language like Klingon, with capital letters already in the orthography. Special characters work about the same way; add them if you need to, but in a more natural way than the line-noise style we’re used to. And since our password is a full phrase, it’s likely going to be near the upper end of the length range, making brute-forcing an impossible task. If it’s allowed, you can even add proper spacing between words, further lengthening the password and frustrating hackers. Also, if the site requires a “security question” (a misnomer if I’ve ever heard one), and it lets you use a custom one, then you never have to worry about forgetting the password, as long as you remember the language.

There are, of course, downsides to this method. Numbers are…difficult; the best option I’ve found for places that make you put one in is a kind of checksum. At the end of the password, simply put the number of letters you used. As an example, let’s say we want to use our example conlang Isian to make a password at Amazon.com. (By the way, that’s a bad idea, as information on Isian is open to all, even if no one’s really looking.) In my opinion, a good phrase to describe Amazon is “they sell everything”. In Isian, that translates to is dule lichacal. Thus, our password could be something like IsDuleLichacal. Fourteen characters, three of them capital letters. And we can take on a 14 at the end to up the strength a little more, or satisfy overly strict systems. As long as you’re consistent, memorization is less of a problem. And you don’t need to write down the password itself; just the key phrase is enough.

Now, not every language works for this. For very good reasons, passwords using Unicode characters are not recommended, even in those rare cases where they’re supported. The ideal conlang for password use is something more like Isian: no diacritics, no funky letters like ə, just basic ASCII. Letters, numbers, and a few symbols—in other words, the same set of characters that passwords can use.

The best conlangs are probably the most English-like in style. Somewhat isolating, but not too much. Relatively short words. A reasonably uncomplicated grammar, so you don’t have to sort through all the rules. Oh, and you’ll definitely need a sizable vocabulary to cover all the concepts you might want to use in your passwords. Just a grammar sketch and the Swadesh List won’t cut it.

Not everybody will want to go through the effort needed for this scheme. But, if you’ve got an extra little conlang around, one you’re not using for anything else, you might want to give it a shot. It can hardly be less secure than the sticky note on your monitor, right?

Magic and tech: construction

Building things isn’t necessarily a sign of civilization and higher thought—birds build nests, for instance, while ants and bees have some seriously elaborate dwellings—but we’ve definitely taken it to another level. Our planet’s surface is covered by billions of buildings, from straw huts to skyscrapers, and many are constructed on the remains of earlier settlements. And that’s only the housing. Add in all those other things we build every single day, from phones to cars, and it’s clear: humans are builders. We always have been.

Beneath the steel rebar and plastic and composite and the other myriad materials, the art of construction hasn’t changed too much over the ages. We’ve developed machinery to automate nearly every aspect of it, but it still boils down to putting pieces together. In general, the addition of magic won’t change that. As we’ll see, it can function as a sort of replacement for the advanced tools available to us but beyond the imagination of our ancestors.

Because this is such a huge topic (even covering only a small corner of it, as we’ll do here), I’m going to break this up into a few smaller sections, each focusing on one aspect of construction and how magic affects it. We’ll start with the first step in building anything: gathering the materials.

Materials

Look around you, and you’ll likely see lots of modern inventions. Computers, phones, televisions—in other words, tech. But take a closer look. Think about the building you’re in, its walls and doors. Things like that. It all had to be built from something, right?

Nowadays, we’ve got a huge variety of materials, especially synthetic ones. Plastic, in the colloquial sense of the word, is a comparatively recent invention, dating back to the 1800s. Aluminum, though found all around us, only started to be used as a component of construction around the same time. Silicone is 20th-century stuff, as are the silicon-based transistors in your computer’s CPU.

In older days, your choice of materials was far more limited. You’ve got metals and alloys, but only those accessible to earlier technology, such as iron, copper, tin, and lead. Wood, clay, and stone are natural and abundant, and they come in lots of styles, each with its own pros and cons. Plants provide fibers, best known for their role as cloth, while animals offer hide, bone, horn, and ivory. Added to these are a small assortment of classical “synthetics”, such as concrete (known to the Romans, among others), glass (at least five thousand years old, not counting natural obsidian), and rubber (derived from plants native to Central and South America).

What can magic add to that? The same thing that technological advances did. We can’t quite get to nylon or graphene, but we can make some advancements. The easiest way to do that is by adding fire: some of the better materials require higher temperatures than early medieval forges can achieve. That’s what it takes to melt tougher metals, for example. (Colder conditions aren’t nearly as helpful, however.)

Most synthetic materials, on the other hand, are created by some sort of chemical process. For that, you need the chemical (or even alchemical) knowledge that comes naturally from the growth of science. Since we’ve already established that the study of magic in our fictional world will increase experimentation and theory, it’s not a great leap to push that same outlook into metallurgy and the study of materials.

Steel, to take one notable example, was notoriously difficult for our predecessors, but magical tech could allow it to be common enough that any old adventurer could wield it. Better control over heat sources and impurities are the reason why, and they give us a number of other advances. Cheaper glass—especially clear plate glass—and ceramics are another good illustration. And if you posit a magical source of electricity (and the understanding of it), then electrolysis nets you aluminum and a number of other niceties.

For our magical society, we won’t go quite that far. They’ve got a good handle on steel, though, to the point where it’s not necessarily the mark of a rich man to have a lot of it. Similarly, quality iron is cheap, and good glass is available. And that’s in addition to the natural set above. (We’ll follow the typical fantasy tropes and say that concrete belongs to an earlier age, its secrets forgotten.) Chemistry is a growing art, but its byproducts aren’t available on an industrial scale…yet. So not too much changes, or so it seems.

Tools

The tools of the carpenter’s trade have changed dramatically in the two thousand or so years since history’s most famous practitioner of the craft. My stepdad builds houses for a living, and while he does have a set of manual hammers, saws, and the like, he won’t be using them on the job under normal circumstances. Today, it’s all about nail guns, automatic drills, compressors, generators, and an assortment of saws and sanders and similar implements.

Tools for working with materials reflect the work done, whether in modern, automated form or as the old-fashioned hand tools of yore. Saws are meant to cut, but not in the same way as, say, a knife; teeth work better than a smooth blade for breaking the thick fibrous bonds of wood in a back-and-forth motion. But splitting logs is best done with a wedge, and axes make excellent wedges. Hammering is all about applying force, and a heavy weight does wonders there. And so on.

For most of history, all these things were hand-operated. Most of the time, anyway. There have always been attempts at power tools. Hydraulic (from water) and pneumatic (from air) pressure have always been favorites; compressed air still works well today, assuming my stepdad’s compressor is in the mood to cooperate, which is never a guarantee. Only in recent times have we been able to convert electricity into the motive force necessary for tools, though heavy machinery has been able to use steam for a couple hundred years.

And that may be one of the best parallels for magical tools. We’ve already seen the application of magical force for such uses as transportation, so it’s no stretch to see how it could be incorporated into mundane tools. Our fictional realm can create magic-powered jackhammers, drills, and nail guns, all of which work far better than their hand-operated cousins, if not as well as modern gadgets. Saws? No problem. Cranes? Sure. How about a nice belt sander? We can do that, too.

But wait, as they say, there’s more. Tools aren’t just about force. What about a blowtorch that uses magical fire? That’s also possible, and probably safer than a tank of acetylene, if properly designed. Soldering and welding both benefit from that, as well, making everything from piping to stained glass cheaper and more widespread. And that’s not even counting what a full-fledged mage could do on the job.

Labor

Old tools were mostly human-powered, and that obviously means you’ve got to have humans to power them. Construction, especially from the house level on up, requires a lot of labor. Traditionally, that meant companies of hired laborers (or, in less-friendly areas, slaves) working tirelessly on the project du jour. With most tasks being done by hand, there wasn’t much choice.

Magic brings something like automation, and we know how automation affects the labor market. You only have to turn on the news to find out. (I’m writing this a couple of days after the “Brexit” vote, and from a state in the US that is seeing a resurgence in manufacturing…but one that doesn’t benefit unskilled labor. That’s all robots, or it will be soon.) As the use of self-powered tools grows, the need for massive numbers of low-wage laborers declines. The Industrial Revolution would have killed slavery without the abolitionist movement, just as the Robotics Revolution is killing the blue-collar job market today. (How that changes the economy is worthy of its own series of posts.)

So our magical society will be slave-free, both out of a concern for our fellow man and a lack of need for slaves as laborers. That doesn’t mean there won’t be any builders, however. Somebody has to work those tools, and somebody has to make them. But it’ll be a bit more like the year 2000 than 1000. Machines won’t be too widespread, but powered tools will be common enough that most have seen them in action, if not used them.

Under construction

I could go on forever, and with a much more informed opinion than usual, thanks to my family situation. But I won’t, because I think you get the picture. Our magical realm will be building in a way that should be fairly recognizable: small to medium teams of workers with semi-automatic tools. With magic, they are more efficient than their real-life counterparts, so the work gets done sooner. That implies more building, whether upward or outward, and the better materials will certainly help the former. Towers, pyramids, and other magnificent works were accomplished without magic, but this realm might be more prone to creating such masterpieces. They’ll have the means, and the time will come when there’s nothing better to do.